Today’s Topics

- **Review: Proof Structures for Quantifiers, Implications and Conjunctions**

- **Proof Structure for Disjunction**

- **Proof by Cases**
Chapter 3

Formal Proofs

Review: Proof Structures for Quantifiers, Implications and Conjunctions
Proof of Multiple Quantifiers

Structure

- Prove $\forall x \in D, \exists y \in E, P(x, y)$
 - Assume $x \in D$. # x is a typical element of D
 - Let $y = ___$. # choose a particular element of the domain
 - Then $y \in E$. # this may be obvious, otherwise prove it
 - # prove $P(x, y)$
 - Then $P(x, y)$.
 - Then $\exists y \in E, P(x, y)$. # introduce existential
 - Then $\forall x \in D, \exists y \in E, P(x, y)$. # introduce universal
Proof of Multiple Quantifiers

Structure

- Prove $\exists x \in D, \forall y \in E, P(x, y)$

 Let $x = \ldots$. # choose a particular element of the domain
 Then $x \in D$. # this may be obvious, otherwise prove it
 Assume $y \in E$. # y is a typical element of E

 \vdash # prove $P(x, y)$
 Then $P(x, y)$.
 Then $\forall x \in D, P(x, y)$. # introduce universal
 Then $\exists y \in E, \forall x \in D, P(x, y)$. # introduce existential
Proof of Conjunction

Structure

- Prove $\forall x \in D, P(x) \land Q(x)$

 Assume $x \in D$. # x is a typical element of D

 Then $P(x)$.

 Then $Q(x)$.

 Then $P(x) \land Q(x)$. # introduce conjunction

 Then $\forall x \in D, P(x) \land Q(x)$. # introduce universal
Chapter 3

Formal Proofs

Proof Structure for Disjunction
Proof of Disjunction

Structure

- Prove $\forall x \in D, P(x) \lor Q(x)$
- Assume $x \in D$. # x is a typical element of D
 \begin{itemize}
 \item # prove $P(x)$
 \begin{itemize}
 \item Then $P(x)$.
 \item Then $P(x) \lor Q(x)$. # introduce disjunction
 \end{itemize}
 \end{itemize}
 Then $\forall x \in D, P(x) \lor Q(x)$. # introduce universal
- Assume $x \in D$. # x is a typical element of D
 \begin{itemize}
 \item # prove $Q(x)$
 \begin{itemize}
 \item Then $Q(x)$.
 \item Then $P(x) \lor Q(x)$. # introduce disjunction
 \end{itemize}
 \end{itemize}
 Then $\forall x \in D, P(x) \lor Q(x)$. # introduce universal
Chapter 3

Formal Proofs

Proof by Cases
Proof by Cases

Implications with Disjunctive Antecedents

- Consider an **implication** which has a **disjunction** as the **antecedent**:
 - \(S_1 : (A_1 \lor A_2) \Rightarrow C \).
- How can we prove \(S_1 \)?
 - \((A_1 \lor A_2) \Rightarrow C\) is equivalent with \((A_1 \Rightarrow C) \land (A_2 \Rightarrow C)\).

General Structure

Assume \(A_1 \lor A_2 \).

Case 1: Assume \(A_1 \).

- \[
 \begin{align*}
 & : \quad \text{# prove } C \\
 & \text{Then } C.
 \end{align*}
\]

Then \(A_1 \Rightarrow C \). \# assuming \(A_1 \) leads to \(C \)

Case 2: Assume \(A_2 \).

- \[
 \begin{align*}
 & : \quad \text{# prove } C \\
 & \text{Then } C.
 \end{align*}
\]

Then \(A_2 \Rightarrow C \). \# assuming \(A_2 \) leads to \(C \)

Then \((A_1 \Rightarrow C) \land (A_2 \Rightarrow C)\). \# introduce conjunction

Then \((A_1 \lor A_2) \Rightarrow C\). \# logically equiv. the previous statement
Proof by Cases

General Case

- **S₂**: \((A_1 \lor \ldots \lor A_n) \Rightarrow C\).
- **S₂** is equivalent with \((A_1 \Rightarrow C) \land \ldots \land (A_n \Rightarrow C)\).

General Structure

Assume \(A_1 \lor \ldots \lor A_n\).

Case 1: Assume \(A_1\).

\[\vdash \# \text{ prove } C\]
Then \(C\).

Then \(A_1 \Rightarrow C\). \# assuming \(A_1\) leads to \(C\)

\[\vdash \]

Case n: Assume \(A_n\).

\[\vdash \# \text{ prove } C\]
Then \(C\).

Then \(A_n \Rightarrow C\). \# assuming \(A_n\) leads to \(C\)
Then \((A_1 \Rightarrow C) \land \ldots \land (A_n \Rightarrow C)\). \# introduce conjunction
Then \((A_1 \lor \ldots \lor A_n) \Rightarrow C\). \# logically equiv. the previous statement
Proof by Cases

General Case

- **Assumption:** \((A_1 \lor \ldots \lor A_n)\).
- **Claim:** \(C\).

General Structure

Assume \(A_1 \lor \ldots \lor A_n\).

Case 1: Assume \(A_1\).

\[\vdash \text{ # prove } C\]
Then \(C\).

\[\vdots\]

Case n: Assume \(A_n\).

\[\vdash \text{ # prove } C\]
Then \(C\).

Then \(C\). # assuming \(A_1 \lor \ldots \lor A_n\) leads to \(C\)
Proof by Cases

Exercise

- Prove that if \(n \) is an integer number, then \(n^2 + n \) is even.

Solution

- **Step 1:** Translate the claim to logical notation.
 - For all integers \(n \), \(n^2 + n \) is even.
 \[\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k. \]

- **Step 2:** Find a plan for the proof:
 - Consider two cases: \(n \) is odd or \(n \) is even.

- **Step 3:** Translate the assumptions/facts to logical notation
 - \[\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k). \]

- **Step 4:** Choose an appropriate proof structure. Use the assumptions/facts to prove the claim.
Proof by Cases

Exercise

- **Assumption:** \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k). \)
- **Claim:** \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k. \)

Solution

Assume \(n \in \mathbb{Z}. \) \(\# n \) is a typical integer number

Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k. \) \(\# \) introduction of universal
Proof by Cases

Exercise

- **Assumption**: \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \).
- **Claim**: \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \).

Solution

Assume \(n \in \mathbb{Z} \). \# \(n \) is a typical integer number

\[\vdots \]

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \).
Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \). \# introduction of universal
Proof by Cases

Exercise

- **Assumption:** \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \).
- **Claim:** \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \).

Solution

Assume \(n \in \mathbb{Z} \). # \(n \) is a typical integer number

Then \((\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \). # by Assumption, \(n \in \mathbb{Z} \)

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \).

Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \). # introduction of universal
Proof by Cases

Exercise

- **Assumption:** $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$.
- **Claim:** $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. \# n is a typical integer number

Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. \# by Assumption, $n \in \mathbb{Z}$

Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$.

\begin{itemize}
 \item Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. \# true in all (both) possible cases

\end{itemize}

Then $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$. \# introduction of universal
Proof by Cases

Exercise

- **Assumption:** \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \).
- **Claim:** \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \).

Solution

Assume \(n \in \mathbb{Z} \). # \(n \) is a typical integer number

Then \((\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)\). # by Assumption, \(n \in \mathbb{Z} \)

Case 1: Assume \(\exists k \in \mathbb{Z}, n = 2k + 1 \).

Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 + 1 \). # instantiate existential

...#

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). # true in all (both) possible cases

Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \). # introduction of universal
Proof by Cases

Exercise

- **Assumption:** \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k). \)
- **Claim:** \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k. \)

Solution

Assume \(n \in \mathbb{Z}. \) # \(n \) is a typical integer number

Then \((\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k). \) # by Assumption, \(n \in \mathbb{Z} \)

Case 1: Assume \(\exists k \in \mathbb{Z}, n = 2k + 1. \)

Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 + 1. \) # instantiate existential

Then \(n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1). \) # some algebra

\[
\vdots
\]

\[
\vdots
\]

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k. \) # true in all (both) possible cases

Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k. \) # introduction of universal
Proof by Cases

Exercise

- **Assumption:** $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$.
- **Claim:** $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number

Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$

Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$.

Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0 + 1$. # instantiate existential

Then $n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1)$. # some algebra

Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # $k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z}$

Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # true in all (both) possible cases

Then $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$. # introduction of universal
Proof by Cases

Exercise

- **Assumption:** $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$.
- **Claim:** $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$.

n is a typical integer number

Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$.

by Assumption, $n \in \mathbb{Z}$

Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$.

Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0 + 1$.

instantiate existential

Then $n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1)$.

some algebra

Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$.

$k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z}$

Case 2: Assume $\exists k \in \mathbb{Z}, n = 2k$.

::

Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$.

true in all (both) possible cases

Then $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

introduction of universal
Proof by Cases

Exercise

- **Assumption:** \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \).
- **Claim:** \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \).

Solution

Assume \(n \in \mathbb{Z} \). \# \(n \) is a typical integer number

Then \((\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)\). \# by Assumption, \(n \in \mathbb{Z} \)

Case 1: Assume \(\exists k \in \mathbb{Z}, n = 2k + 1 \).

Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 + 1 \). \# instantiate existential

Then \(n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1) \). \# some algebra

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). \# \(k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z} \)

Case 2: Assume \(\exists k \in \mathbb{Z}, n = 2k \).

Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 \). \# instantiate existential

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). \# true in all (both) possible cases

Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \). \# introduction of universal
Proof by Cases

Exercise

- **Assumption:** \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \).
- **Claim:** \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \).

Solution

Assume \(n \in \mathbb{Z} \). \# \(n \) is a typical integer number

Then \((\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \). \# by Assumption, \(n \in \mathbb{Z} \)

Case 1: Assume \(\exists k \in \mathbb{Z}, n = 2k + 1 \).

Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 + 1 \). \# instantiate existential

Then \(n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1) \). \# some algebra

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). \# \(k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z} \)

Case 2: Assume \(\exists k \in \mathbb{Z}, n = 2k \).

Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 \). \# instantiate existential

Then \(n^2 + n = n(n + 1) = 2k_0(2k_0 + 1) = 2[k_0(2k_0 + 1)] \).

Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). \# true in all (both) possible cases

Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \). \# introduction of universal
Proof by Cases

Exercise

- **Assumption:** \(\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \).
- **Claim:** \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \).

Solution

Assume \(n \in \mathbb{Z} \). \# \(n \) is a typical integer number
Then \((\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k) \). \# by Assumption, \(n \in \mathbb{Z} \)
Case 1: Assume \(\exists k \in \mathbb{Z}, n = 2k + 1 \).
Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 + 1 \). \# instantiate existential
Then \(n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1) \). \# some algebra
Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). \# \(k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z} \)
Case 2: Assume \(\exists k \in \mathbb{Z}, n = 2k \).
Let \(k_0 \in \mathbb{Z} \) be such that \(n = 2k_0 \). \# instantiate existential
Then \(n^2 + n = n(n + 1) = 2k_0(2k_0 + 1) = 2[k_0(2k_0 + 1)] \).
Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). \# \(k = k_0(2k_0 + 1) \in \mathbb{Z} \)
Then \(\exists k \in \mathbb{Z}, n^2 + n = 2k \). \# true in all (both) possible cases
Then \(\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k \). \# introduction of universal
Proof by Cases

Exercise

Prove that the square of a natural is a multiple of 3 or a multiple of 3 plus 1.

Solution

Step 1: Translate the claim to logical notation.
- \(\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1) \).

Step 2: Find a plan for the proof:
- Consider three cases: \(n = 3k \) or \(n = 3k + 1 \) or \(n = 3k + 2 \).

Step 3: Translate the assumptions/facts to logical notation
- \(\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 3k \lor n = 3k + 1 \lor n = 3k + 2) \).

Step 4: Choose an appropriate proof structure. Use the assumptions/facts to prove the claim.
Proof by Cases

Structure

- Disjunction in the assumptions \rightarrow proof by cases
- Disjunction in the claim \rightarrow proof structure for disjunction

Assumption: $P \lor Q$.

Claim: $S \lor R$.

Assume $P \lor Q$

Case 1: Assume P.

\[\therefore \quad \# \text{ prove } R \]

Then R.

Case 2: Assume Q.

\[\therefore \quad \# \text{ prove } S \]

Then S.

Thus $R \lor S$. $\#$ introduce disjunction
Proof by Cases

Structure

- Disjunction in the **assumptions** \rightarrow proof by cases
- Disjunction in the **claim** \rightarrow proof structure for disjunction

Assumption: $P \lor Q$.

Claim: $S \lor R$.

Assume $P \lor Q$

Case 1: Assume P.

\[\vdash \text{# prove } R \]

Then R.

Then $R \lor S$. \# introduce disjunction

Case 2: Assume Q.

\[\vdash \text{# prove } S \]

Then S.

Then $R \lor S$. \# introduce disjunction

Thus $R \lor S$. \# introduce disjunction