Chapter 4

Algorithm Analysis and Asymptotic Notation

Bahar Aameri
Department of Computer Science
University of Toronto

Mar 20, 2015
Announcements

- Final Exam:
 - Chapter 1: Only Section 1.5 (Problem-solving techniques in Section 1.3 are useful in doing proofs. See Tutorial 5 and its solutions)
 - Chapter 2
 - Chapter 3
 - Chapter 4: Excluding Sections 4.2 and 4.3
Today’s Topics

- Analyzing Running Time of Algorithms
- Running Time Analysis for Linear Search
- Running Time Analysis for Insertion Sort
Worst-case analysis of algorithm

Given a program P, calculate a coarse estimation of its worst-case running time based on the size of the input.

Symbolic Translation

- P: A program.
- $t_P(x)$: running time of program P with input x.
- I: the set of all inputs for P.
- $T_P(n)$: worst-case running time of P for inputs with size n.

$$T_P(n) = \max\{t_P(x) \mid x \in I \land \text{size}(x) = n\}$$
Review (from Week 8)

Worst-case analysis of algorithm

- It is infeasible to calculate the exact value of $T_P(n)$.
- We only need a coarse estimation
 1. We assume that the running time of all lines of P are equal
 $\rightarrow t_P(x)$ denotes the number of lines that are executed for x.
 2. We use Big-Θ to give an estimation for $T_P(n)$.

Running Time Analysis for Linear Search (LS)

- **Claim**: $T_{LS} \in \Theta(n)$

```python
def LS(A, x):
    """ Return an index i such that x == L[i].
    Otherwise, return -1. """
    i = 0  # (line 1)
    while i < len(A):  # (line 2)
        if A[i] == x:  # (line 3)
            return i  # (line 4)
        i = i + 1  # (line 5)
    return -1  # (line 6)
```

Finding a Tight Bound for an Algorithm

Finding a Tight Bound

\[T_P \in \Theta(W) \text{ iff } T_P \in \mathcal{O}(W) \text{ and } T_P \in \Omega(W). \]

Finding an Upper Bound

\[T_P \in \mathcal{O}(W) \text{ iff } \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow T_P(n) \leq cW(n) \]

To prove \(T_P \in \mathcal{O}(W) \), must show that:

\[\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall x \in I, \text{size}(x) \geq B \Rightarrow t_P(x) \leq cW(\text{size}(x)) \]

Finding a Lower Bound

\[T_P \in \Omega(W) \text{ iff } \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \max\{t_P(x) \mid x \in I \land \text{size}(x) = n\} \geq cW(n) \]

To prove \(T_P \in \mathcal{O}(W) \), must show that:

\[\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \exists x \in I, \text{size}(x) = n \land t_P(x) \geq cW(n) \]
Example #1

Running Time Analysis for Linear Search (LS)

- **Claim:** $T_{LS} \in \mathcal{O}(n)$

```python
def LS(A, x):
    """Return an index $i$ such that $x == A[i]$. Otherwise, return -1. """
    i = 0  # (line 1)
    while i < len(A):  
        if A[i] == x:  
            return i  # (line 3)
        i = i + 1  # (line 5)
    return -1  # (line 6)
```

- $n = len(A)$
- **final loop check**

- while $i < len(A)$:
 - at most $n + 1$

- if $A[i] == x$:
 - at most n
 - return i
 - $i = i + 1$
 - at most n

- return -1

Mathematical Expression and Reasoning 7
Example #1

Running Time Analysis for Linear Search (LS)

- **Claim**: \(T_{LS} \in \mathcal{O}(n) \)

 Assume \(n \in \mathbb{N} \), \(A \) is an array of length \(n \).

 Then lines 2–5 execute not more than \(3n \) steps, plus 1 step for the last loop test. (add the explanations from the previous slide for justification)

 So lines 1–6 take no more than \(3n + 3 \) steps.

 Then \(\forall n \in \mathbb{N} \) and all possible inputs \(A, x \), \(t_{LS}(A) \) is less than \(3n + 3 \) steps.

- \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3n + 3 \leq cn \)

 Let \(c = 6 \). Let \(B = 1 \). Then \(c \in \mathbb{R}^+ \) and \(B \in \mathbb{N} \).

 Assume \(n \in \mathbb{N} \), \(A \) is an array of length \(n \), and \(n \geq B \).

 Then \(3n \leq 3n \). \# both sides are equal

 Then \(3n + 3 \leq 3n + 3n = 6n \). \# \(n \geq 1 \)

 Then \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \implies T_{LS}(n) \leq cn \). \# definition of \(T_{LS} \)

 Then \(T_{LS} \in \mathcal{O}(n) \). \# by definition of \(\mathcal{O}(n) \)
Example #1

Running Time Analysis for Linear Search (LS)

- **Claim:** \(T_{LS} \in \Omega(n) \)

 assume \(x \) is equal to the middle entry of \(A \)

```python
def LS(A, x):
    """ Return an index \( i \) such that \( x == L[i] \).
    Otherwise, return -1. """
    i = 0  # (line 1)
    while i < len(A): # (line 2)
        if A[i] == x: # (line 3)
            return i  # (line 4)
        i = i + 1 # (line 5)
    return -1 # (line 6)
```

\[\text{while } i < \text{len}(A): \quad \text{at most } n/2 + 1 \quad \# \text{ (line 2)} \]

\[\text{if } A[i] == x: \quad \text{at most } n/2 \quad \# \text{ (line 3)} \]
\[\quad \text{return } i \quad \# \text{ (line 4)} \]
\[\quad i = i + 1 \quad \text{at most } n/2 - 1 \quad \# \text{ (line 5)} \]

\[\text{return } -1 \quad \# \text{ (line 6)} \]
Running Time Analysis for Linear Search (LS)

- **Claim:** $T_{LS} \in \Omega(n)$

 Assume $n \in \mathbb{N}$, Let A is an array of length n and $x = A[\lceil n/2 \rceil]$.
 Then lines 2–5 execute not more than $3 \lceil n/2 \rceil$ steps. (add the explanations from the previous slide for justification)
 So lines 1–6 take no less than $3 \lceil n/2 \rceil + 1 \geq 3n/2$ steps.
 Then $\forall n \in \mathbb{N}$ and all possible inputs A, $t_{LS}(A)$ is greater than $3n/2$ steps.

- $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3n/2 \geq cn$

 Let $c = 1/2$. Let $B = 1$. Then $c \in \mathbb{R}^+$ and $B \in \mathbb{N}$.
 Assume $n \in \mathbb{N}$, A is an array of length n and $x = A[\lceil n/2 \rceil]$, and $n \geq B$.
 Then $3n/2 \geq n/2$. \(# 3 > 1\)
 Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \implies T_{LS}(n) \geq cn$. \(# \text{definition of } T_{LS}\)
 Then $T_{LS} \in \Omega(n)$. \(# \text{by definition of } \Omega(n)\)
Example #2

Running Time Analysis for Insertion Sort (IS)

- **Claim**: $T_{IS} \in \mathcal{O}(n^2)$

 def IS(A):

 """ Sort the elements of A in non-decreasing order. ""

 i = 1

 while i < len(A):
 t = A[i]
 j = i
 while j > 0 and A[j-1] > t:
 j = j-1
 A[j] = t

 i = i+1

 n = len(A)

 each iteration at most n

 each iteration at most $2n$

 $3n^2$
Example #2

Running Time Analysis for Insertion Sort (IS)

- **Claim:** $T_{IS} \in \mathcal{O}(n^2)$

 Assume $n \in \mathbb{N}$, A is an array of length n.
 Then lines 5–7 execute not more than $3n$ steps, plus 1 step for the last loop test. (add the explanations from the previous slide for justification)
 Then lines 2–9 take no more than $n(5 + 3n) + 1 = 5n + 3n^2 + 1$ steps. (add the explanations from the previous slide for justification)
 So lines 1–9 take no more than $5n + 3n^2 + 2$ steps.
 Then $\forall n \in \mathbb{N}$ and all possible inputs A, $t_p(A)$ is less than $5n + 3n^2 + 2$ steps.

- $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3n^2 + 5n + 2 \leq cn^2$

 Let $c = 9$. Let $B = 1$. Then $c \in \mathbb{R}^+$ and $B \in \mathbb{N}$.
 Assume $n \in \mathbb{N}$, A is an array of length n, and $n \geq B$.
 Then $3n^2 \leq 3n^2$. # both sides are equal
 Then $3n^2 + 5n + 2 \leq 3n^2 + 5n^2 + 2n^2 = 9n^2$. # $n \geq 1$
 Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow T_{IS}(n) \leq cn^2$. # definition of T_{IS}
 Then $T_{IS} \in \mathcal{O}(n^2)$. # by definition of $\mathcal{O}(n^2)$
Example #2

Running Time Analysis for Insertion Sort (IS)

- **Claims:** $T_{IS} \in \Omega(n^2)$

```
assume A=[n-1,n-2,...,0]
```

def IS(A):
 """ Sort the elements of A in non-decreasing order. """
 i = 1 # (line 1)
 while i < len(A): # (line 2)
 t = A[i] # (line 3)
 j = i # (line 4)
 while j > 0 and A[j-1] > t: # (line 5)
 j = j-1 # (line 7)
 A[j] = t # (line 8)
 i = i+1 # (line 9)
```

*For each iteration of the outer `while` loop, at most $i$ comparisons are made.*

*For each iteration of the inner `while` loop, at most $n-1$ comparisons are made.*

*The total number of comparisons is the sum of $3i+1$ for $i=1$ to $n-1$. This is because there is an initial comparison for each element, plus an additional comparison for each element except the last.*
Example #2

Running Time Analysis for Insertion Sort (IS)

- **Claim**: $T_{IS} \in \Omega(n^2)$
  
  Assume $n \in \mathbb{N}$, $A = [n - 1, n - 2, \ldots, 0]$.
  
  Then lines 5–7 execute $3i$ steps each iteration of the outer loop, plus 1 step for the final loop check.
  
  Then lines 2–9 take $n + 4(n - 1) + 3n(n - 1)/2 + (n - 1) = 3n^2/2 + 9n/2 - 5$ steps. (add the explanations from the previous slide for justification)
  
  Then lines 1–9 take $3n^2/2 + 9n/2 - 4$ steps.

  Then $\forall n \in \mathbb{N}$ exists an input $A$ with size $n$, $t_p(A)$ is greater than or equal to $3n^2/2 + 9n/2 - 4$.

- $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3n^2/2 + 9n/2 - 4 \geq cn^2$

  Let $c = 1$. Let $B = 1$. Then $c \in \mathbb{R}^+$ and $B \in \mathbb{N}$.
  
  Assume $n \in \mathbb{N}$, $A$ is an array of length $n$, and $n \geq B$.
  
  Then $3n^2/2 \geq n^2$. # $3/2 > 1$
  
  Then $3n^2/2 + 9n/2 - 4 \geq n^2$. # $n \geq 1$, so $9n/2 - 4 > 0$

  Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \implies T_{IS}(n) \geq cn^2$. # definition of $T_{IS}$

  Then $T_{IS} \in \Omega(n^2)$. # by definition of $\Omega(n^2)$