Chapter 2

Logical Notation

Bahar Aameri
Department of Computer Science
University of Toronto

Jan 09, 2015
Announcements

- **Tutorials:**
 - Locations and times are posted on the course web page.
 - Tutorial exercises will be posted on the course web page before Monday. Work on the exercise before the tutorial.
 - Each quiz covers all topics that you have learned during the week prior to the quiz.

- **Office hours:** Friday 12:30-1:30pm and 3:30-5pm in BA4261.
Today’s Topics

- Evaluating Quantified Statements
- Visualization with Venn Diagram
- Logical Sentences and Statements
- Negation, Conjunction, Disjunction
Chapter 2
Logical Notation

Evaluating Quantified Statements
Review: Sets

Properties and Relationships as Sets

- To describe a domain, we write **statements** that specify **properties** of objects within the domain and their **relationships**.

 One way of writing statements in **symbolic** notation is to treat **properties** and **relationships** as **sets**.

Example

<table>
<thead>
<tr>
<th>Emp.</th>
<th>Gender</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>male</td>
<td>-</td>
</tr>
<tr>
<td>Betty</td>
<td>female</td>
<td>Doug</td>
</tr>
<tr>
<td>Carlos</td>
<td>male</td>
<td>Ellen</td>
</tr>
<tr>
<td>Doug</td>
<td>male</td>
<td>Ellen</td>
</tr>
<tr>
<td>Ellen</td>
<td>female</td>
<td>Al</td>
</tr>
<tr>
<td>Flo</td>
<td>female</td>
<td>Ellen</td>
</tr>
</tbody>
</table>

- **Property:**

 \[M = \{ x \mid x \text{ is male}\}. \]

 \[M = \{ Al, Carlos, Doug\}. \]

- **Relationship:**

 \[S = \{ \langle x, y \rangle \mid x \text{ supervises } y\}. \]

 \[S = \{ \langle Al, Ellen\rangle, \langle Ellen, Carlos\rangle, \langle Ellen, Doug\rangle, \langle Ellen, Flo\rangle, \langle Doug, Betty\rangle\}. \]
Review: Quantified Statements

- When an statement is about all the objects in the domain, the statement is a **Universal Quantification**.
 - **Universal quantifier**: \forall

- Examples of universally quantified statements in English:
 - All employee makes less than $55,000.$
 - Each male employee makes more than $55,000.$

- When an statement is about existence of one or more elements of a domain with a particular property, the statement is a **Existential Quantification**.
 - **Existential quantifier**: \exists

- Examples of existentially quantified statements in English:
 - Some employee earns over $65,000.$
 - At least one female employee earns less than $65,000.$
Evaluating Quantified Statements

- **Prove/disprove** the following universally quantified claims.
 - Every employee makes less than $55,000.
 - Every female employee makes less than $50,000.
 - There is no male employee which makes less than $30,000.

<table>
<thead>
<tr>
<th>Employee</th>
<th>Gender</th>
<th>Salary</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>male</td>
<td>$60,000</td>
<td>-</td>
</tr>
<tr>
<td>Betty</td>
<td>female</td>
<td>$500</td>
<td>Doug</td>
</tr>
<tr>
<td>Carlos</td>
<td>male</td>
<td>$40,000</td>
<td>Ellen</td>
</tr>
<tr>
<td>Doug</td>
<td>male</td>
<td>$30,000</td>
<td>Ellen</td>
</tr>
<tr>
<td>Ellen</td>
<td>female</td>
<td>$50,000</td>
<td>Al</td>
</tr>
<tr>
<td>Flo</td>
<td>female</td>
<td>$20,000</td>
<td>Ellen</td>
</tr>
</tbody>
</table>

Evaluating Universally Quantified Statements

- To **prove**, verify that all elements of the domain is an example that satisfies the quantification.
- To **disprove**, give at least one counter-example that does not satisfy the quantification.
Evaluating Quantified Statements

- **Prove/disprove** the following existentially quantified claims.
 - Some employee earns less than $57,000.
 - Some employee earns over $65,000.
 - Not every female employee earns more than $10,000.

<table>
<thead>
<tr>
<th>Employee</th>
<th>Gender</th>
<th>Salary</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>male</td>
<td>$60,000</td>
<td>-</td>
</tr>
<tr>
<td>Betty</td>
<td>female</td>
<td>$500</td>
<td>Doug</td>
</tr>
<tr>
<td>Carlos</td>
<td>male</td>
<td>$40,000</td>
<td>Ellen</td>
</tr>
<tr>
<td>Doug</td>
<td>male</td>
<td>$30,000</td>
<td>Ellen</td>
</tr>
<tr>
<td>Ellen</td>
<td>female</td>
<td>$50,000</td>
<td>Al</td>
</tr>
<tr>
<td>Flo</td>
<td>female</td>
<td>$20,000</td>
<td>Ellen</td>
</tr>
</tbody>
</table>

Evaluating Existentially Quantified Statements

- To **prove**, give at least **one example** that satisfies the quantification.
- To **disprove**, verify that **every element** of the domain is a counter-example that does not satisfy the quantification.
Evaluating Quantifiers - Summary

<table>
<thead>
<tr>
<th></th>
<th>Universal</th>
<th>Existential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify (prove)</td>
<td>All elements</td>
<td>one example</td>
</tr>
<tr>
<td>Falsify (disprove)</td>
<td>one counter-example</td>
<td>all counter-examples</td>
</tr>
</tbody>
</table>
Chapter 2

Logical Notation

Visualization with Venn Diagram
Visualizing Relationships between Sets

Venn Diagram

- The **rectangle** represents the **domain**.
- Each **circle** represents a **set** in the domain.
- **O** in a part of a set means that this part must be **occupied**, i.e., there must be some element in there.
- **X** in a part of a set means that this part must be **empty**, i.e., contains no element.

\[P \cap Q \neq \emptyset \]
Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize $P \cap Q = \emptyset$.

![Venn Diagram](image)
Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize $P \subseteq Q$.

![Venn Diagram](image-url)
Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize the region which represents $P \cup Q \cup R$
Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize \(P \cap Q \cap R = \emptyset \).
Chapter 2

Logical Notation

Logical Sentences and Statements
What is the difference between following sentences?

- The employee makes less than $55,000.
- Betty makes less than $55,000.
- Every employee make less than $55,000.

Open Sentences vs. Statements

- **Open Sentences** include *unspecified (unquantified) objects*, and therefore cannot be evaluated.
- All objects in a **closed sentence** (aka **statement**) are either *specified or quantified*, and therefore a statement can be evaluated to True or False.
Exercise: Is it a statement?

- $L(x)$. No
- $\forall x \in E, L(x)$. Yes
- $\forall x \in E, S(x, y)$. No
- Someone took my pen. Yes
- The pen is red. No
- Roses are red. Yes

Transforming open sentences to statements

- **Specifying** the values of unspecified objects:

 $L(x) \rightarrow L(\text{Carlos})$

- **Quantifying** over unspecified objects:

 $L(x) \rightarrow \forall x, L(x)$

 $L(x) \rightarrow \exists x, L(x)$
Chapter 2

Logical Notation

Negation, Conjunction, Disjunction
Predicates

An n-ary predicate $L(x_1, ..., x_n)$ is a **boolean function** returning **True** or **False** such that

$$L(x_1, ..., x_n) = \text{True} \text{ if } \langle x_1, ..., x_n \rangle \text{ satisfy the property that is denoted by } L$$

$$L(x_1, ..., x_n) = \text{False} \text{ if } \langle x_1, ..., x_n \rangle \text{ do not satisfy the property that is denoted by } L.$$

Example

$$M = \{ Al, Carlos, Doug \}.$$

- $M(Al) = \text{True}, M(Carlos) = \text{True}, M(Doug) = \text{True}.$
- $M(Betty) = \text{False}, M(Ellen) = \text{False}, M(Flo) = \text{False}.$
Review: Sets and Predicates

Predicates

An \(n \)-ary predicate \(L(x_1, \ldots, x_n) \) is a \textbf{boolean function} returning \textbf{True} or \textbf{False} such that

\[
L(x_1, \ldots, x_n) = \text{True} \quad \text{if } \quad \langle x_1, \ldots, x_n \rangle \text{ satisfy the property that is denoted by } L
\]

\[
L(x_1, \ldots, x_n) = \text{False} \quad \text{if } \quad \langle x_1, \ldots, x_n \rangle \text{ do not satisfy the property that is denoted by } L.
\]

Important Notes about Predicates

- \(L(x) \) is \textbf{not a set}! In a logical statement, you cannot treat a symbol both as a set and a predicate symbol
 - \textbf{Incorrect} use of notation: \(\forall x, y \in E, x \in L, L(y) \).
 - \textbf{Correct} version: \(\forall x, y \in E, x \in L, y \in L \) or \(\forall x, y \in E, L(x) \land L(y) \).

- Don’t apply \textbf{set operations over predicates}!
 \(P(x) \cap Q(y) \) makes no sense (why?)

- Don’t \textbf{nest} predicates!
 \(P(Q(x)) \) makes no sense (why?)
Negation

Negation Symbol

For the sake of brevity we will write:

- $P(x_1, ..., x_n)$ when $P(x_1, ..., x_n) = \text{True}$
- $\neg P(x_1, ..., x_n)$ when $P(x_1, ..., x_n) = \text{False}$

- “\neg“ is called the negation symbol.
- $\neg P(x_1, ..., x_n)$ is the negation of predicate $P(x_1, ..., x_n)$.

Example #1

$F(x)$: x feels good.

Translate the following logical sentence to English

- $\neg F(Betty)$: Betty does not feel good.
- Can we translate $\neg F(Betty)$ to: Betty feels bad?
 - Only if we are given an explicit assumption, or we can formally prove that all elements in the domain either feel good or bad.
Negation

Negation Symbol

For the sake of brevity we will write:
- $P(x_1, \ldots, x_n)$ when $P(x_1, \ldots, x_n) = \text{True}$
- $\neg P(x_1, \ldots, x_n)$ when $P(x_1, \ldots, x_n) = \text{False}$

- "\neg" is called the **negation symbol**.
- $\neg P(x_1, \ldots, x_n)$ is the negation of predicate $P(x_1, \ldots, x_n)$.

Example #2

$M(x)$: x is male.

Translate the following logical sentence to English:
- $\neg M(Betty)$: Betty is **not male**.
- Can we translate $\neg M(Betty)$ to: Betty **is female**?
 - Only if we are given an explicit **assumption**, or we can **formally prove** that all elements in the domain are **either male or female**.
Negation

Negation Symbol

For the sake of brevity we will write:

\(P(x_1, \ldots, x_n) \) when \(P(x_1, \ldots, x_n) = \text{True} \)

\(\neg P(x_1, \ldots, x_n) \) when \(P(x_1, \ldots, x_n) = \text{False} \)

- "\(\neg \)" is called the negation symbol.
- \(\neg P(x_1, \ldots, x_n) \) is the negation of predicate \(P(x_1, \ldots, x_n) \).

Example #3

\(L(x) \): \(x \) earns less than \$55,000.

Translate the following logical sentence to English

- \(L(x) \): \(x \) earns less than \$55,000.
 - \(\neg L(Al) \): \(Al \) does not earn less than \$55,000.
- Can we translate \(\neg L(Al) \) to: \(Al \) earns more than or equal to \$55,000?
 - Yes, because we have the following mathematical fact about numbers:
 For two numbers \(n \) and \(m \), either \(n = m \) or \(n < m \) or \(n > m \).
Conjunction (Logical AND)

Conjunctive Sentences

- A **conjunction** is a sentence that joins two other sentences and claims that both of the original sentences are true.
 - Al makes more than $25,000 and less than $75,000.
- **Conjunct Symbol**: ∧
- **Conjunction in logical notation**: $P \land Q$, where P and Q are logical sentences.

$L(x)$: x earns less than $75,000.$
$K(x)$: x earns more than $25,000.$

- Al makes more than $25,000$ and less than $75,000.$
 - $K(Al) \land L(AL)$.
- All employees make more than $25,000$ and less than $75,000.$
 - $\forall x \in E, K(x) \land L(x)$.

Evaluating Conjunctions

$P \land Q$ is **True** if P is **True** and Q is **True**.

$P \land Q$ is **False** if P is **False** or Q is **False**.

Evaluating Conjunctions

- To *prove*, verify that **both** P and Q are **True**.
- To *disprove*, show that **at least one** of P and Q is **False**.
Disjunction (Logical OR)

Disjunctive Sentences

- A **disjunction** is a sentence that joins two other sentences and claims that **at least one** of the original sentences are true.
 - The employee is female **or** makes less than $75,000.

- **Disjunct Symbol**: \lor
- **Disjunction in logical notation**: $P \lor Q$, where P and Q are logical sentences.

$L(x)$: x earns less than $75,000$.
$F(x)$: x is female.

- The employee is female or makes less than $75,000$.
 $x \in E, F(x) \lor L(x)$.
- All employees are female or make less than $75,000$.
 $\forall x \in E, F(x) \lor L(x)$.
Evaluating Disjunctions

\[P \lor Q \text{ is True if } P \text{ is True or } Q \text{ is True.} \]
\[P \lor Q \text{ is False if } P \text{ is False and } Q \text{ is False.} \]

Evaluating Disjunctions

- To prove, verify that at least one of \(P \) and \(Q \) is True.
- To disprove, show that both \(P \) and \(Q \) are False.
You should be able to understand the following jokes:

Three logicians walk into a bar.
The bartender asks: Do all of you want a drink?
The first logician says: I don’t know.
The second logician says: I don’t know.
The third logician says: Yes!

A logician’s wife is having a baby.
The doctor immediately hands the newborn to the dad.
His wife asks impatiently: So, is it a boy or a girl?
The logician replies: Yes.
(Well, it seems that the logician has made an assumption, right?)