CSC165 Mathematical Expression and Reasoning for Computer Science

Chapter 4: Algorithm Analysis and Asymptotic Notation

Lisa Yan

Department of Computer Science
University of Toronto

March 4, 2015
Announcements

- Thursday tutorial session will be cancelled for this week.

 Due to large request for office hours, updated TA office hours information for this Thursday is listed below:
 - 12-2 BA3201
 - 4-5:30 BA3201

- Today’s office hour 3-5 will be as usual at BA4261.
Asymptotic notation

- O
- Ω
- Θ
Big-O Notation

Here is a precise definition of “The set of functions that are eventually no more than \(f \), to within a constant factor”:

Definition: For any function \(f : \mathbb{N} \to \mathbb{R}_{\geq 0} \) \((i.e., \text{any function mapping naturals to nonnegative reals}), \text{let}

\[
O(f) = \{ g : \mathbb{N} \to \mathbb{R}_{\geq 0} \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \leq cf(n) \}.
\]

\(g \in O(f) \) means that “\(g \) grows no faster than \(f \)”.
Equivalently, “\(f \) is an upper bound for \(g \)”.

\(\mathbb{R}^+ \): the set of positive real numbers
Definition: For any function $f : \mathbb{N} \rightarrow \mathbb{R}^+ \geq 0$, let

$$\Omega(f) = \{ g : \mathbb{N} \rightarrow \mathbb{R}^+ \geq 0 \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \geq cf(n) \}.$$

“$g \in \Omega(f)$” expresses the concept that “g grows at least as fast as f”; f is a lower bound on g.
Definition: For any function $f : \mathbb{N} \to \mathbb{R}^\geq 0$, let

$$\Theta(f) = \{ g : \mathbb{N} \to \mathbb{R}^\geq 0 \mid \exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_1 f(n) \leq g(n) \leq c_2 f(n) \}.$$

“$g \in \Theta(f)$” expresses the concept that “g grows at the same rate as f”.

f is a tight bound for g, or f is both an upper bound and a lower bound on g.
Prove that $2n^3 - 5n^4 + 7n^6$ is in $O(n^2 - 4n^5 + 6n^8)$

We begin with ...

Let $c' = ___$. Then $c' \in \mathbb{R}^+$. Let $B' = ___$. Then $B' \in \mathbb{N}$.

Assume $n \in \mathbb{N}$ and $n \geq B'$.
arbitrary natural number and antecedent

Then $2n^3 - 5n^4 + 7n^6 \leq \ldots \leq c'(n^2 - 4n^5 + 6n^8)$.

Then $\forall n \in \mathbb{N}, n \geq B' \Rightarrow 2n^3 - 5n^4 + 7n^6 \leq c'(n^2 - 4n^5 + 6n^8)$.
introduce \Rightarrow
and \forall

Hence, $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 2n^3 - 5n^4 + 7n^6 \leq c(n^2 - 4n^5 + 6n^8)$.
introduce \exists
Another O Proof

Prove that $2n^3 - 5n^4 + 7n^6 \in O(n^2 - 4n^5 + 6n^8)$

To fill in the . . .

we try to form a chain of inequalities, working from both ends, simplifying the expressions:

$$2n^3 - 5n^4 + 7n^6 \leq 2n^3 + 7n^6 \quad \text{(drop } -5n^4)$$

$$\leq 2n^6 + 7n^6 \quad \text{(increase } n^3 \text{ to } n^6)$$

$$= 9n^6 \leq 9n^8 \quad \text{(simpler to compare)}$$

$$= 2(9/2)n^8 \quad \text{(choose } c' = 9/2)$$

$$= 2cn^8$$

$$= c'(-4n^8 + 6n^8) \quad \text{(bottom up: decrease } -4n^5 \text{ to } -4n^8)$$

$$\leq c'(-4n^5 + 6n^8) \quad \text{(bottom up: drop } n^2)$$

$$\leq c'(n^2 - 4n^5 + 6n^8)$$

We never needed to restrict n for $n \in \mathbb{N} \ (n \geq 0)$, so we can fill in $c' = 9/2, B' = 0$, and complete the proof.
Here are some general results that we now have the tools to prove.

- $3n^2 + 2n \in O(n^2)$.
- $n^3 \notin O(3n^2)$.
- $2^n \notin O(n^2)$.
- $n^2 + n \in \Omega(15n^2 + 3)$.
Intuitively, big-Oh notation expresses something about how two functions compare as \(n \) tends toward infinity. But we know of another mathematical notion that captures a similar (though not identical) idea: the concept of *limit*.

Definition Let \(f \) be a function defined on some open interval that contains the number \(a \), except possibly at \(a \) itself. Then we say that the limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \), and we write

\[
\lim_{x \to a} f(x) = L
\]

if for every number \(\varepsilon > 0 \) there is a number \(\delta > 0 \) such that

\[
0 < |x - a| < \delta \quad \text{then} \quad |f(x) - L| < \varepsilon
\]

precisely, recall the following definition, for all \(L \in \mathbb{R}^\geq 0 \):

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \iff \forall \varepsilon \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow L - \varepsilon < \frac{f(n)}{g(n)} < L + \varepsilon
\]
Calculus: *Limit-1*

Note that [1] can be rewritten as follows:

\[
5 - \varepsilon < f(x) < 5 + \varepsilon
\]

if \(3 - \delta < x < 3 + \delta\) \((x \neq 3)\), then \(5 - \varepsilon < f(x) < 5 + \varepsilon\).

and this is illustrated in Figure 1. By taking the values of \(x \neq 3\) to lie in the interval \((3 - \delta, 3 + \delta)\) we can make the values of \(f(x)\) lie in the interval \((5 - \varepsilon, 5 + \varepsilon)\).

Using [1] as a model, we give a precise definition of a limit.

\[2\quad \text{Definition}\] Let \(f\) be a function defined on some open interval that does not contain a number \(a\), except possibly at \(a\) itself. Then we say that the limit of \(f(x)\) as \(x\) approaches \(a\) is \(L\), and we write

\[
\lim_{x \to a} f(x) = L
\]
Infinite Limits

Infinite limits can also be defined in a precise way. The following is a precise version of Definition 4 in Section 2.2.

6 Definition Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that for every positive number M there is a positive number δ such that

if $0 < |x - a| < \delta$ then $f(x) > M$

precisely, recall the following definition:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \iff \forall \varepsilon \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow \frac{f(n)}{g(n)} > \varepsilon$$
Calculus: *Limit-2*

![Graph showing a function with horizontal line at y = M, and points a - δ and a + δ on the x-axis.](image)
Prove: \(f(n) \in \mathcal{O}(g(n)) \)

Suppose that \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \). Intuitively, this tells us that \(\frac{f(n)}{g(n)} \approx L \), for \(n \) “large enough.”

In that case, \(f(n) \approx Lg(n) \) for \(n \) large enough, so we should be able to prove that \(f \in \mathcal{O}(g) \):

Assume \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \).

Then \(\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow L - 1.1 < \frac{f(n)}{g(n)} < L + 1.1 \).

Definition of limit for \(\varepsilon = 1.1 \)

Then \(\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \leq (L + 1)g(n) < (L + 1.1)g(n) \).

Then \(f \in \mathcal{O}(g) \).

Definition of \(\mathcal{O} \), with \(B = n_0 \) and \(c = L + 1 \)

Hence, \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \Rightarrow f \in \mathcal{O}(g) \).
Prove: \(g(n) \notin O(f(n)) \)

Recall that \(g(n) = 2^n \) and \(f(n) = n \). We rely on the fact that \(\lim_{n \to \infty} \frac{2^n}{n} = \infty \).

Assume \(c \in \mathbb{R}^+ \), assume \(B \in \mathbb{N} \). \# arbitrary values

Then \(\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow \frac{2^n}{n} > c \). \# definition of \(\lim_{n \to \infty} \frac{2^n}{n} = \infty \) with \(\varepsilon = c \)

Let \(n_0 \) be such that \(\forall n \in \mathbb{N}, n \geq n_0 \Rightarrow \frac{2^n}{n} > c \), and \(n' = \max(B, n_0) \).

Then \(n' \in \mathbb{N} \).

Then \(n' \geq B \). \# by definition of \(\max \)

Then \(2^{n'} > cn' \) because \(\frac{2^{n'}}{n'} > c \). \# by the first line above, since \(n' \geq n_0 \)

Then \(n' \geq B \land g(n') > cf(n') \). \# introduce \(\land \)

Then \(\exists n \in \mathbb{N}, n \geq B \land g(n) > cf(n) \). \# introduce \(\exists \)

Then \(\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land g(n) > cf(n) \). \# introduce \(\forall \)

\(^1\) Applying l'Hôpital's Rule, \(\lim_{n \to \infty} \frac{2^n}{n} = \lim_{n \to \infty} \frac{\ln(2) \cdot 2^n}{1} = \infty \).
Here are some general results that we now have the tools to prove.

- $3n^2 + 2n \in O(n^2)$.
- $n^3 \notin O(3n^2)$.
- $2^n \notin O(n^2)$.
- $n^2 + n \in \Omega(15n^2 + 3)$.
Here are some general results that we now have the tools to prove.

- $3n^2 + 2n \in \mathcal{O}(n^2)$.
- $n^3 \notin \mathcal{O}(3n^2)$.
- $2^n \notin \mathcal{O}(n^2)$.
- $n^2 + n \in \Omega(15n^2 + 3)$.

- $7n \in \mathcal{O}(n^2)$; $7n \notin \Omega(n^2)$.
- $7n^2 \in \mathcal{O}(n^2)$; $7n^2 \in \Omega(n^2)$; $7n^2 \in \Theta(n^2)$.
- $7n^3 \notin \mathcal{O}(n^2)$; $7n^3 \in \Omega(n^2)$.
Some Theorems

Here are some general results that we now have the tools to prove.

- $(f \in O(g) \land g \in O(h)) \Rightarrow f \in O(h)$.
 Intuition: If f grows no faster than g, and g grows no faster than h, then f must grow no faster than h.
Here are some general results that we now have the tools to prove.

- \((f \in O(g) \land g \in O(h)) \Rightarrow f \in O(h)\).
 Intuition: If \(f\) grows no faster than \(g\), and \(g\) grows no faster than \(h\), then \(f\) must grow no faster than \(h\).

- \(g \in \Omega(f) \iff f \in O(g)\).
 Intuition: if \(f\) grows no faster than \(g\), then \(g\) grows no slower than \(f\).
Some Theorems

Here are some general results that we now have the tools to prove.

- \((f \in O(g) \land g \in O(h)) \implies f \in O(h)\).
 Intuition: If \(f\) grows no faster than \(g\), and \(g\) grows no faster than \(h\), then \(f\) must grow no faster than \(h\).

- \(g \in \Omega(f) \iff f \in O(g)\).
 Intuition: if \(f\) grows no faster than \(g\), then \(g\) grows no slower than \(f\).

- \(g \in \Theta(f) \iff g \in O(f) \land g \in \Omega(f)\).
 Intuition: \(g\) grows at the same rate as \(f\). \(f\) is both an upper bound and a lower bound on \(g\).
Theorem 1

For any functions $f, g, h : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}$, we have $(f \in O(g) \land g \in O(h)) \Rightarrow f \in O(h)$.

Proof:

Assume $f \in O(g) \land g \in O(h)$.

So $f \in O(g)$.

So $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n > B \Rightarrow f(n) \leq cg(n)$. \footnote{by def'n of $f \in O(g)$}

Let $c_g \in \mathbb{R}^+, B_g \in \mathbb{N}$ be such that $\forall n \in \mathbb{N}, n \geq B_g \Rightarrow f(n) \leq c_g g(n)$.

So $g \in O(h)$.

So $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \leq ch(n)$. \footnote{by def'n of $g \in O(h)$}

Let $c_h \in \mathbb{R}^+, B_h \in \mathbb{N}$ be such that $\forall n \in \mathbb{N}, n \geq B_h \Rightarrow g(n) \leq c_h h(n)$.

Let $c' = c_g c_h$. Let $B' = \max(B_g, B_h)$.

Then, $c' \in \mathbb{R}^+$ (because $c_g, c_h \in \mathbb{R}^+$) and $B' \in \mathbb{N}$ (because $B_g, B_h \in \mathbb{N}$).

Assume $n \in \mathbb{N}$ and $n \geq B'$.

Then $n \geq B_h$ (by definition of \max), so $g(n) \leq c_h h(n)$.

Then $n \geq B_g$ (by definition of \max), so $f(n) \leq c_g g(n) \leq c_g c_h h(n)$.

So $f(n) \leq c'h(n)$.

Hence, $\forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) \leq c'h(n)$.

Therefore, $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq ch(n)$.

So $f \in O(g)$, by definition.

So $(f \in O(g) \land g \in O(h)) \Rightarrow f \in O(h)$.

Lisa Yan (University of Toronto)
Theorem 2

For any functions $f, g : \mathbb{N} \to \mathbb{R}^\geq 0$, we have $g \in \Omega(f) \iff f \in \mathcal{O}(g)$.

Proof:

\[
g \in \Omega(f) \iff \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \geq cf(n) \quad \text{(by definition)}
\]

\[
\iff \exists c' \in \mathbb{R}^+, \exists B' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) \leq c'g(n)
\]

(letting $c' = 1/c$ and $B' = B$)

\[
\iff f \in \mathcal{O}(g) \quad \text{(by definition)}
\]
Theorem 3

For any functions \(f, g : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \), we have \(g \in \Theta(f) \iff g \in \mathcal{O}(f) \land g \in \Omega(f) \).

Proof:

\(g \in \Theta(f) \)
\(\iff \) (by definition)
\(\exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_1 f(n) \leq g(n) \leq c_2 f(n). \)
\(\iff \) (combined inequality, and \(B = \max(B_1, B_2) \))
\(\left(\exists c_1 \in \mathbb{R}^+, \exists B_1 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_1 \Rightarrow g(n) \geq c_1 f(n) \right) \land \)
\(\left(\exists c_2 \in \mathbb{R}^+, \exists B_2 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_2 \Rightarrow g(n) \leq c_2 f(n) \right) \)
\(\iff \) (by definition)
\(g \in \Omega(f) \land g \in \mathcal{O}(f) \)
Corollary: For any functions $f, g : \mathbb{N} \to \mathbb{R}^{>0}$, we have $g \in \Theta(f) \iff f \in \Theta(g)$.

Proof:

\[
g \in \Theta(f) \iff g \in \mathcal{O}(f) \land g \in \Omega(f) \quad \text{(by 3)}
\]
\[
\iff g \in \mathcal{O}(f) \land f \in \mathcal{O}(g) \quad \text{(by 2)}
\]
\[
\iff f \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \quad \text{(by commutativity of } \land)\]
\[
\iff f \in \mathcal{O}(g) \land f \in \Omega(g) \quad \text{(by 2)}
\]
\[
\iff f \in \Theta(g) \quad \text{(by 3)}
\]