CHAPTER 4

ALGORITHM ANALYSIS AND ASYMPTOTIC NOTATION

Feb 25, 2015
Lisa Yan
def LS(A, x):
 """Return index i, x == A[i].
 Otherwise, return -1 """
 1. i = 0
 2. while i < len(A):
 3. if A[i] == x:
 4. return i
 5. i = i + 1
 6. return -1

What is the runtime of LS(A, x)?
if the first index where x is found is k
i.e., $A[k] == x$

$t_{LS}(A, x) = 1 + 3(k+1)$
$= 3k + 4$

$t_{LS}([2, 4, 6, 8], 6) = 10$
Today’s Outline

- Formal definition of O, Ω, Θ
FORMAL DEFINITIONS OF O, Ω, Θ
Recap $O(n^2)$

Set of functions that **grow no faster** than n^2
- count the number of steps
- constant factors don’t matter
- only highest-order term matter

The following functions are in $O(n^2)$

\[
n^2 \quad 2n^2 + 3n \quad \frac{n^2}{165} + 1130n + 3.14159
\]
Formal definition of $O(n^2)$

A function $f(n)$ is in $O(n^2)$ iff

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \text{ such that } \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq cn^2$$

Beyond breakpoint B, $f(n)$ is upper-bounded by cn^2, where c is some wisely chosen constant multiplier.
A chicken grows slower than a turkey in the sense that, after a certain breakpoint, a chicken will always be smaller than a turkey.
Formal Definition $O(n^2)$

A function $f(n)$ is in $O(n^2)$ iff

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \text{ such that } \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq cn^2$$

Simple example: prove $700n^2 \in O(n^2)$

Pick $c = 711$, or any real number ≥ 700

Pick $B = 0$, or any natural number ≥ 0

then $\forall n \in \mathbb{N}, n \geq 0 \Rightarrow 700n^2 \leq 711n^2$

then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 700n^2 \leq cn^2$

then $700n^2 \in O(n^2)$
Formal Definition $\Omega(n^2)$

A function $f(n)$ is in $O(n^2)$ if and only if

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \text{ such that } \forall n \in \mathbb{N}, \ n \geq B \Rightarrow f(n) \leq cn^2$$

A function $f(n)$ is in $\Omega(n^2)$ if and only if

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \text{ such that } \forall n \in \mathbb{N}, \ n \geq B \Rightarrow f(n) \geq cn^2$$

$O(n^2)$: set of functions that grow no faster than n^2

$\Omega(n^2)$: set of functions that grow no slower than n^2

$\Theta(n^2)$: set of functions that are in both $O(n^2)$ and $\Omega(n^2)$ (functions growing as fast as n^2)
Growth rate ranking of some common functions

\[f(n) = n^n \]
\[f(n) = 2^n \]
\[f(n) = n^3 \]
\[f(n) = n^2 \]
\[f(n) = n \log n \]
\[f(n) = \sqrt{n} \]
\[f(n) = \log n \]
\[f(n) = 1 \]
Examples

\[7n \in \mathcal{O}(n^2) \quad 7n \notin \Omega(n^2) \]

\[7n^3 \notin \mathcal{O}(n^2) \quad 7n^3 \in \Omega(n^2) \]

\[7n^2 \in \mathcal{O}(n^2) \quad 7n^2 \in \Omega(n^2) \]

\[7n^2 \in \Theta(n^2) \]
Next Week

• Worst-case analysis of two algorithms