1. In the list below, \(i \) passes of the selection sort algorithm have been completed, and the double bar separates the sorted part of the list from the unsorted part.

\[
\begin{array}{c|c|c}
L & \text{sorted} & \text{unsorted} \\
\hline
i & & \\
\end{array}
\]

(a) \text{get_index_of_smallest}(L, i) works by comparing pairs of items from the unsorted section. If there are \(n \) items in \(L \), when \text{get_index_of_smallest}(L, i) is executed, how many pairs of items are compared? (Your answer should be a function involving \(n \) and \(i \)).

(b) For function \text{get_index_of_smallest}(L, i), is there a worst case and a best case?

(c) In terms of the number of items in the unsorted section, does \text{get_index_of_smallest} have constant running time, linear running time, quadratic running time, or some other running time?

\[
\text{(a) constant} \quad \text{(b) linear} \quad \text{(c) quadratic} \quad \text{(d) something else}
\]

(d) In function \text{selection_sort}, the first time that function \text{get_index_of_smallest} is called, \(i \) is 0; the second time, \(i \) is 1; and so on. What value does \(i \) have the last time that function \text{get_index_of_smallest} is called?

(e) For the call \text{selection_sort}(L), write a formula expressing how many comparisons are made during all the calls to \text{get_index_of_smallest}.

(f) In terms of the length of the list, does \text{selection_sort} have constant running time, linear running time, quadratic running time, or some other running time?

\[
\text{(a) constant} \quad \text{(b) linear} \quad \text{(c) quadratic} \quad \text{(d) something else}
\]