Approximating iteratively:
CSC270, Assignment 1

September 24, 2002

There is an HTML version of this document available at
http://www.cs.utoronto.ca/~heap/270F02/al /al.html

Assignment 1 is due Thursday October 10 by midnight. Late assignments are not normally accepted, and are
never accepted without written explanation. What you hand in should be your own work, and you should
re-read the section in the Course Information Sheet if you’re unsure.

In this assignment you’ll explore a technique for approximating a function, f(z). What makes this
exploration a little tricky, at first, is that you aren’t given a definition of f(z), but rather of its derivative,

f'(@)-

A warm-up function

Suppose you’re building a reflector to concentrate the sun’s rays. After a bit of thought you conclude that
the reflector should be circular when viewed from above, and that its cross-section in any vertical plane
should always have a slope equal to twice its distance from the reflector’s centre. You’ve got a knack for
mathematical notation, so you say that if the distance from the centre is called x, then your reflector should
have vertical cross-sections that correspond to a function f(z) with derivative 2z. How do you find the
function f(x) that satisfies f'(z) = 227

Since you’ve recently studied some calculus, you might recognize that f(z) = 22 will work (as will f(z)
= 22 4+ 37, and many other similar functions). Or you might haul out the Fundamental Theorem of Calculus
and integrate both sides of f'(x) = 2z to come up with the same result. Or you might decide to use the
following iterative approximation: Since you can always place your reflector at ground level, you know that
(at least) f(0) = 0 — so you know at least one pair of coordinates (0, f(0)) = (0,0). Plugging this into
your formula for f’, you can see that f'(0) is also 0. You reason that you can approximate f(h) (if h is
pretty small) by drawing the tangent line through f(0) and then calling the point where this tangent line
has horizontal component h (h, fr) — a pretty good approximation of (h, f(h)). In fact, you don’t even
need to draw the tangent line if you calculate fr = f(0) + f/(0) x h. You then iterate your approach —
you use your approximation f; & f(h) to calculate a new tangent, and with this you come up with a second
approximation (2h, fap,). If h = 0.1, the result is shown in Figure 1.

Clearly our approximate function (which we’re denoting f, to distinguish it from f(z)) is not a perfect
parabola. But it might turn out that if you build a reflector based on it, you’ll be able to heat a can of soup.
Otherwise, you’ll need to think about how to improve your approximation.

A more challenging function

In the previous section, you may have wondered “why bother with an iterative solution when I can easily
see that f(z) = 22 is a solution?” However, what if you were modelling a problem where things were a bit



X**2
"guadraticApprox.txt" -

0.8

0.6

r fo f@| 2 fo f@

0.0 0.0 00 06 03 0.36

0.1 0.0 0.01] 0.7 0.42 0.49 o

0.2 0.02 0.041 08 056 0.64 02l e

0.3 0.06 0.09 09 072 0.81 a

04 012 0.16 || 1.0 0.9 o | 4?" ‘ | |

0.5 02 025 1.1 1.1 1.21 % T o 04 06 08 1

Figure 1: The variable z is incremented by 0.1 at each step. Use the known value of f(z) at the initial point, z = 0), and
then use the approximation f; = f'(z —0.1) x 0.1 + fz—0.1-

messier? Suppose you knew that for some constant K you had:

fl@) = —f(z) - K(f(z) — exp(-z)) 1)
f0) = 2 (2)

Once again you have an unknown function, f(z), defined in terms of its derivative.! However, our current
definition is more complicated, since the right-hand side is an expression in both z and our unknown function
f(z). You might have studied differential equations (which Equation 1 is) and be able to use a well-studied
bag of tricks (integrals, integrating factors, etc.)? to work out with paper and pencil that

f(z) = exp(—(K + 1)z) + exp(—z) 3)
However, if what you need is an approximation, you can proceed as in the previous section:

1. Decide on a step size that you’ll increment x by (we used 0.1 in the last section, but your mileage may
vary), and call it h.

2. Denote your approximate function as f, to distinguish it from the exact function f(x). Also denote
the approximate derivative as f, since it won’t always be identical to f'(z).

3. Since you are given the exact value f(0) = 2, start things out on the right foot by setting fo = 2, and
the initial value of z = 0.

4. fris f§ x h + fo, and f} is calculated by by substituting fo for f(0) in Equation 1.
5. fan is f; X h + fp, substituting f, for f(h) in Equation 1.
6. And so on...

Since you’ve been given the exact expression for f(x), you can always compare your approximation f, to
y g

f ().

L An equation that defines a function in terms of its derivative(s) is called a Differential Equation (DE). If it has a single
independent variable (e.g. z in our case), it’s called an Ordinary Differential Equation (ODE).
2There are lots of DEs that resist all the tricks in this well-studied bag.




Your job

In a file called diffeq.c you will implement the function delist specified in diffeq.h. Starter files can
be found in the directory ~ajr/al on the CDF machines. Your function will use Equationl and the steps
outlined in the previous section to approximate f(z) as x increases from 0 to 1.0 in steps of 0.01. Since you
have the initial value f(0) = 2, you can fill in the zeroth entry of the table with no calculation:

{0.0 2.0 2.0 0.0}

For the remaining 99 entries, you have to use the approach described in the last section to calculate f,.

You may define any helper methods you choose in diffeq.c. You may modify the constants TABLELINES
and STEPSIZE in diffeq.h, but you shouldn’t alter any of the declarations there. You are welcome to use
testdiffeq.c to test drive your solution, and Makefile to build testdiffeq.

Briefly comment on your results for K == 10 in a file called report. What happens if you change K to
5007 What happens to the relative error?

Although we don’t generally have a nice analytical solution for f(z) that we have derived here, you can
use the one provided (Equation 3) to analyze truncation error. In the course notes, page 14-15, there is
an expression for the truncation error introduced by truncating a Taylor series (Equation 1.5.4). Substitute
our solution into this expression to see whether you can come up with a way to improve our approximation.
Explain your suggestion in report.

What to hand in

The deadline is Thursday October 10 at midnight. Late submissions are not generally accepted, and never
accepted unless you have a written explanation. If you do have an explanation, please do submit your
assignment late and send me an explanation by email.

You are to submit files diffeq.c and report. Each of these files must begin with a prologue comment
stating your name, student number, and TA (or tutorial time/place), as well as the purpose of the program
and any overall notes. Make sure your files are in plain text by using the cat command on a CDF machine
to display them on the console.

diffeq. c contains your implementation of delist and any helper functions it needs to do its job. report
contains your comments on the results of running DE with K == 10 and K == 500, plus your error analysis
and suggestions for improving the algorithm. report must not exceed 300 words in length.

Do not submit diffeq.h or testdiffeq.c, since the marking TA will use their own version.

Once you are satisfied with your files, you can submit them for grading as follows:

submit -c csc270h -a al diffeq.c report

Don’t submit your compiled program, just diffeq.c and report. You may change your files and resubmit
them any time up to the due time (the latest copy overwrite an earlier one). You can check that your
assignment has been submitted with the command:

submit -1 -c csc270h -a al
To resubmit a file that has already been submitted, use -f:
submit -c csc270h -a al -f diffeq.c

Hand in your own work. A mark of 0/10 is better than the academic penalty for plagiarism.

Marking scheme

You are graded on the quality and organization of your C code. A program that “works” but is extremely
disorganized might receive a failing grade.

We may test your implementation of delist using automated testing, and these tests may play a role in
how the correctness of your code is evaluated. To make this possible, your code should compile and allow



testdiffeq to run when your diffeq.c is present in the same CDF directory as Makefile, testdiffeq.c,
and diffeq.h.

Your diffeq.c must be written in C (not C++) and must compile and run on the CDF Unix system
using gcc -Wall -ansi -pedantic.



